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Hydrodynamic excitations in lattice gas cellular automata are described in terms 
of equilibrium time correlation functions for the local conserved variables. For 
large space and time scales the linearized hydrodynamic equations are obtained 
to Navier-Stokes order. Exact expressions for the associated susceptibilities and 
transport coefficients are identified in terms of correlation functions. The general 
form of the time correlation functions for conserved densities in the 
hydrodynamic limit is given and illustrated by some examples suitable for com- 
parison with computer simulation. The transport coefficients are related to time 
correlation functions for the conserved fluxes in a way analogous to the 
Green-Kubo expressions for continuous fluids. The general results are applied 
for a one-component fluid and several types of binary diffusion. Also discussed 
are the effects of unphysical slow modes such as staggered particle or momen- 
tum densities. 

KEY WORDS: Cellular automata; lattice gases; mode coupling theory; 
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1. I N T R O D U C T I O N  

The discovery of lattice gas cellular au toma ta  capable of reproducing 
Navier -Stokes  hydrodynamics  as a con t i nuum limit has opened a 

n u m b e r  of interest ing lines of study (see ref. 1 for an overview of recent 
developments) .  (2~ In  one direction, it appears that solutions to the non-  

l inear hydrodynamic  equat ions  under  various physical bounda ry  condi-  

t ions can be studied efficiently by const ruct ion of comput ing  machines 
specialized to implement  the simple dynamics  of cellular au toma ta  (CA). 
Here, we consider a complementa ry  use of CA as models to study the rela- 
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tionship of macrodynamics to its underlying microdynamics for systems 
with many degrees of freedom. Thus, we take seriously the CA as models 
for a fluid, and apply standard methods of nonequilibrium statistical 
mechanics to investigate the conditions under which hydrodynamic equa- 
tions can be expected to apply and the relationship of the parameters of 
these equations to the microdynamics. The use of continuous time lattice 
models (e.g., the lattice Lorentz gas) has proved fruitful in clarifying many 
aspects of fluid dynamics, such as anomalous memory effects in low dimen- 
sions. We believe the additional simplifications of CA will allow an even 
more penetrating analysis of how the macroscopic fluid dynamics results 
from its underlying microdynamics. 

In the following we limit attention to CA that admit an equilibrium 
state and a relatively small number of globally conserved variables. We 
assume that "spurious" conserved variables arising from an oversimplified 
dynamics, but without physical significance, have been eliminated from the 
CA or otherwise isolated. In this context, the local microscopic conserva- 
tion laws provide the basis for macroscopic hydrodynamics on a space and 
time scale large compared to that for the lattice. The class of CA con- 
sidered here consist of point particles. This excludes certain other CA, such 
as the hard hexagon or MDMD model of Colvin et  al., ~3) which include 
collisional transfer contributions not included in our description. For the 
analysis given here, no further details of the microdynamics is required. In 
particular, the results apply for both deterministic and stochastic dynamics. 
Also, we do not restrict the fluid to be isotropic, so that CA leading to 
hydrodynamics with lower symmetry than the Navier-Stokes equations are 
included in our discussion. 

For states near equilibrium the deviations of the local conserved 
variables from their equilibrium values are expected to obey the linearized 
hydrodynamic equations (on the appropriate space and time scale). There 
is then a formally exact relationship of these deviations to the equilibrium 
space and time correlation function for the microscopic conserved densities 
that allows identification of linearized hydrodynamics with the long-time 
dynamics of the correlation functions. This relationship was first expressed 
in a general form by Onsager, (4) and has been exploited extensively to 
describe properties of both real and model fluids. (5-8) Our objective here is 
to show that the time correlation function method applies to CA as well, 
and to develop some of its consequences for this case. 3 Although the results 
are limited to linear hydrodynamic equations, a broad field of study is 
indicated in this context both by simulation of the correlation functions 

3 Preliminary reports of some of our results are given elsewhere. 19'1~ 
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and their evaluation by standard many-body methods. In the last section, 
we discuss several qualitative and quantitative problems that would be of 
interest to address by this method. 

In Section 2, the conserved variables and their correlation functions 
are introduced. The consequences of the conservation laws for the correla- 
tion functions are obtained and used to define a formally exact set of equa- 
tions for the correlation functions. The continuum limit of these equations 
is then obtained to Navier-Stokes order (second order in the spatial 
gradients). The coefficients in this expansion are the thermodynamic 
susceptibilities (e.g., sound velocity) and the transport coefficients. In 
general, the susceptibilities can be evaluated exactly if there are no correla- 
tions between lattice sites in the equilibrium enesemble, as is true for all 
current CA considered. The hard-hexagon model (3) is an exception. The 
transport coefficients are given by discrete-time sums over time correlation 
functions for the fluxes associated with the conserved variables. This result 
is similar to the Green-Kubo expressions (11~ for transport coefficients in 
real fluids or solids, with some important differences. The hydrodynamic 
limit of the correlation functions can be calculated from the solution to 
these linear equations, and some examples are given. We stress the impor- 
tance of simulating these functions for low-dimensional systems where the 
hydrodynamics is expected to be anomalous. (12~ 

Section 3 is devoted to evaluation of the time correlation functions in 
the hydrodynamic limit (long time and large wavelength). Two cases are 
considered. The correlation functions of local conserved densities are 
expressed in terms of the hydrodynamic modes. (13~ The second case con- 
sidered is correlation functions of the conserved currents which characterize 
the Green-Kubo expressions for the transport coefficients. Their long-time 
dependence is calculated on the basis of hydrodynamic mode coupling 
theory, (~2'~4'15~ retaining the dominant two-mode contribution. The 
formulation is general and includes the case of spurious slow modes (see 
Section 5). 

In Section 4 application of the general results to CA models for a one- 
component fluid (~6) is discussed, and expressions for the viscosities are 
obtained. Most of the results for transport coefficients in this section are 
new, although there are other derivations of Green-Kubo expressions in 
the literature for specific coefficients and specific models. (~6-21~ In many 
cases we find discrepancies with the results given here. These differences are 
also noted and discussed. Closest to our derivation is the projection 
operator method given recently by Zanetti, (22) who has obtained indepen- 
dently some of the results presented here. 

As noted above, the simplicity of CA dynamics often leads to spurious 
conservation laws without physical Significance at the macroscopic level. 
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However, they introduce additional slow modes and associated transport 
coefficients that must be accounted for. In Section 5 we consider the 
application of the time correlation function method to the description of 
such spurious conservation laws. Specifically, we describe the diffusive 
modes arising from the conservation of staggered momentum densities in 
the two-dimensional F H P  model on a hexagonal lattice, discovered 
recently by Zanetti. (22) Green-Kubo expressions for new diffusion coef- 
ficients are obtained for lattice gases and for the F H P  model. Some 
differences from the results of Zanetti are noted. 

Several types of diffusion are considered in Section 6: tagged particle 
diffusion, diffusion in a two-color mixture of mechanically identical par- 
ticles, and binary diffusion in a two-component mixture. Finally, a number 
of comments are offered in the last section to motivate further study of the 
correlation functions introduced here. 

2. G R E E N - K U B O  R E L A T I O N S  

Hydrodynamics is a macroscopic manifestation of the microscopic 
conservation laws. We consider only CA fluids consisting of point particles. 
In that case the microscopic equation of motion for the occupation 
numbers has the general form 

n(e, r + e ;  t +  1)=  n(e, r; t)+I(cln) (2.1) 

The nonlinear collision term I(c[n) only takes the values 0, +1,  and 
describes dynamics that can be deterministic or stochastic. Beyond this 
general form, no further restrictions are required on the collision term 
except that it supports a set of conservation laws (e.g., number, momen- 
tum) whose local densities are given by the vector A(r, t ) =  {A~(r, t)}, 

A(r, t) = ~ a(e) n(e, r; t) (2.2) 
c 

Here r is the position vector of a lattice site, e is a velocity vector for a par- 
ticle at that site, where le] may take different values 0, 1, ..., and t is an 
integer-valued time. These local densities are constructed from collisional 
invariants, a ( e ) =  {a~(e)} (e.g., mass a~ = 1, momentum a~ =e) ,  satisfying 
Zc a(e)I(cln)= 0, and from the occupation number for the velocity state 
e on site r at time t, n(e, r; t). The microscopic conservation law for the 
lattice gases can be written 

a(e)[n(e, r + e; t + 1) - n(e, r; t)] = 0 (2.3) 
c 
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The details of how the dynamics for n(e, r; t) is generated and the structure 
of the lattice are unimportant for the analysis of this section. The only 
restriction beyond existence of the conserved variables A is an equilibrium 
distribution that is spatially uniform. (~6) The results obtained here are 
therefore quite general, applying to both deterministic and stochastic 
dynamics, to lattices with anisotropic hydrodynamics, and to single-speed 
and multiple-speed models. 

The matrix of equilibrium correlation functions for the conserved 
variables is defined by 4 

G(r, t; r', t') = (~A(r, t) ~A(r', t ' ) )  (2.4) 

with 6A = A -  (A).  The brackets denote an average over the equilibrium 
distribution of values for n(e, r; t) = 0 or 1 for all e and r. This distribution 
is taken to be stationary and has the translational invariance of the lattice. 
It follows that G depends only on the differences r - r' and t - t'. A Fourier 
representation is introduced by 

G(k, t )=  ~ [ e x p ( - i k "  r)] G(r, t; 0, 0 ) =  (A(k, t)I A(k))  (2.5) 
17 

where the inner product is defined as 

(g  d G) = V-I (6F6G * ) (2.6) 

The asterisk denotes complex conjugation, A(k, t) is the Fourier transform 
of the conserved variable, and V is the total number of sites in the lattice. 

These correlation functions describe the relaxation of spontaneous 
fluctuations in the equilibrium state. In addition, they represent the non- 
equilibrium dynamics of the average conserved variables for states near 
equilibrium through the relationship (5 8) 

(6A(k, t))ne = G(k, t) a - t ( k ,  0)(6A(k, 0))he (2.7) 

where (6A) .e  = ( A ) , e  - ( A )  and ( --. ).e denotes an average over the 
initial nonequilibrium ensemble. The linearized hydrodynamic equations 
correspond to the dynamics of (&A(k, t))n~ for large t and small k, 

(~t+ikf2+k2A+ . . . ) (~A(k,  t)~n~ = 0  (2.8) 

4 This definition of G is the transpose of the correlation matrix introduced in ref. 10. It has the 
advantage of being more directly related to the response function and hydrodynamic modes 
[see (2.7) below]. However, since the eigenvalues of a matrix and its transpose are the same, 
the expressions for the transport coefficients and modes given in ref. 10 agree with those 
obtained here. 
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The time derivative occurs because (2.8) is valid only for large times in 
which a continuum limit applies. Also, the dots on the left side indicate 
terms higher order in k. Navier-Stokes-order hydrodynamics results from 
retaining only terms up through order k 2. The matrix f2 describes the 
reversible (Euler) dynamics, while A desicrbes Navier-Stokes-order dissi- 
pation. The elements of A are the transport coefficients. Comparison of 
Eqs. (2.7) and (2.8) shows that these matrices can be identified from an 
analysis of the equilibrium time correlation functions. This basic result 
is Onsager's regression hypothesis, that the long-time decay of long- 
wavelength components of the equilibrium fluctuations follows the macro- 
scopic laws (2.8). The correlation function method is therefore an efficient 
way to obtain exact expressions for (2 and A without explicit consideration 
of the nonequilibrium state. This is in contrast to other methods based on 
a Chapman-Enskog expansion of the distribution function or on the 
Landau-Lifschitz method of fluctuating hydrodynamic equations with a 
Langevin force added. 

The analysis is straightforward and makes use only of the conservation 
laws and stationarity. The details have been given elsewhere, (1~ so only the 
primary results will be quoted here. There are three steps in the derivation. 
First, the discrete Laplace transform of G(k, t) is introduced by 

G(k,s)= ~ e S ' G ( k , t - 1 )  (2.9) 
t - - 1  

Next, the conservation laws are used to obtain a formally exact equation 
for C, 

[e s -  1 + L(k, s)] ~(k, s) = G(k, 0) (2.10) 

The matrix L(k, s) is given in terms of the correlation functions for the 
local conserved densities and their fluxes. The dispersion relation 

D e t [ e + - l + L ( k ,  s ) ] = 0  (2.11) 

identifies the fluctuation spectrum for these correlation functions. The 
hydrodynamic excitations are defined to be those solutions to (2.11) for 
which s = - co(k) ~ 0 as k -+ 0. Expanding to Navier-Stokes order (second 
order in k), Eq. (2.11) simplifies to 

Det[s + ikf2 + k2A] = 0 (2.12) 

The Euler matrix f2 and susceptibility matrix Z are given by 

Q= ( J [ A ) z  -1, Z -  ( A I A )  (2.13) 
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Here, J is the longitudinal current associated with the conserved density A, 
defined by 

J ( t )=~c ta (e )3n(e , r ; t ) ,  ct = l~ 'e  (2.14) 
r , c  

The transport or Navier-Stokes matrix A is given by the small-s limit of 
the Green-Kubo relation, 

A(s)= ~ * e  s'q~(t)= ~ e-S'(~(t)-~O(O) (2.15) 
t = 0  t ~ 0  

In writing (2.12) it has been assumed that A(0) is bounded (for dimen- 
sionality d ~< 2 this is not the case; see Section 3). The asterisk indicates that 
the t = 0 term has a weight of 1/2. Here we have introduced the matrix of 
current-current correlation functions, 

~b(t) = ( J ( t ) l J > z  -~ - O  z= ( ] ( t ) l ]>X -1 (2.16) 

and used the relation ( J IA> = (A  I J>. Also, ] denotes the "subtracted" 
flux, 

] = J - - A ( A I A >  -~ < A I J > = J - A s  + (2.17) 

The subtracted flux is seen to be that part of J that is orthogonal to the 
conserved densities A. As shown in ref. 10, the term ~b(0)/2 in (2.15) 
originates completely from the Euler or reversible part; in particular, a 
term - ~Q2/2 comes from the small-s expansion of e s -  1 ~- s + $2/2, where 
s2/2 is replaced effectively by -k2122/2. This corresponds to eliminating the 
second time derivatives of slow hydrodynamic variables with the help of 
the Euler equations. The term A p =- -~b(0)/2 is referred to as the propaga- 
tion part of the transport matrix. It is purely kinematic and only contains 
static correlations. We also note that the subtracted parts in 
Eqs. (2.15)-(2.17) are constant in time. 

Equations (2.12)-(2.15) are the primary results of this section. They 
are exact expressions for the matrices in the hydrodynamic equations (2.8) 
in terms of equilibrium correlation functions, provided the small-s limit of 
A(s) remains finite. The dispersion relations (2.12) show that the matrix of 
correlation functions G(k, t )=  <A(k, t) lA(k)> obeys for long times and 
small k the linear equations 

~ + i k I 2 + k 2 A  G ( k , t ) = 0  (2.18) 

This in turn yields the linearized hydrodynamic equations (2.8) 
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The evaluation of the susceptibility and Euler matrices )~ and (2 is 
easily performed for a given CA since the occupation numbers for different 
states {c, r} at equal times are uncorrelated in the equilibrium state, u6~ 

(3n(e, r) 6n(e', 0 ) )  =- K6r, o 6c, c,, K = f ( 1  - f )  = p(b - p ) / b  2 (2.19) 

Here f and p = bf  are the average occupation per state {e, r} and per site 
r, respectively, where b is the number of velocity states per site. The rela- 
tion (2.19) guarantees that the susceptibility matrix Z and the Euler matrix 
f2 are k independent, 

Z~,~ = (A:,(k) I A~(k) ) = K ~ G(c)  a~(c) (2.20) 
c 

(f2Z)~a = (J~(k) I A~(k)) = K ~ c,a~(c) aa(c) (2.21) 
4' 

Further reduction of )~ and f2 requires specification of the CA. Evaluation 
of the matrix A for the transport coefficients is more difficult and involves 
a detailed analysis of the many-body dynamics. 

3. H Y D R O D Y N A M I C  M O D E S  A N D  M O D E  C O U P L I N G  T H E O R Y  

In this section the long-time and long-wavelength limits of time 
correlation functions are calculated using methods developed for con- 
tinuous fluids. For the correlation matrix of conserved densities G(k, t), 
this simply involves solution to the linearized hydrodynamic equations 
(2.18). Evaluation of the current correlation functions ( J ( t ) l J )  in this 
limit is somewhat more difficult. Here we apply the mode coupling theory 
of Kadanoff and Swift (14) developed for critical dynamics and adapted by 
Ernst et al. (15) for fluids away from critical points. The basic idea is that 
products of two, three,..., microscopic fluctuations 3A(k, t)3A(q, t)... are 
slow modes of the system with hydrodynamic components contributing to 
the current correlation functions. 

We first consider the hydrodynamic modes by diagonalizing the 
matrix in Eq. (2.18), assuming for the time being that A(s) remains finite 
as s ~ 0 (this can be assured by considering a large but finite system, 
although possibly at the expense of some system-size dependence; see 
discussion below). The eigenvalues are the roots s = - c o ~  of the secular 
equation, where # labels l modes if Eq. (2.12) is an lx  I determinant. If 
L(k, s) in (2.11) and A(s) in (2.12) are regular functions of k and s at small 
values of their arguments, then the roots of the secular equations (2.11) 
and (2.12) can be expanded in a power series in k, 

co ~( k ) = ic~,k + }~uk 2 (3.1) 



Cellular Automata  65 

where c~ is the sound velocity of a propagating mode and 2~ is the 
damping constant or diffusivity. It is possible to show that the sound 
velocities are real and that the damping constants, given in the form of 
Green-Kubo expressions, are positive. (8) For diffusive modes c~ =0. The 
corresponding right and left eigenfunctions are to lowest order in k linear 
combinations of the conserved densities (2.1) that are specified below. They 
are defined by 

(ikn + k2A) Ou(k) = (o~(k) ~"(k) 
(3.2) 

(ikC2 + k2A) + ~'(k)  = co*(k) ~ '(k)  

These eigenfunctions form a biorthogonal set 0~ (k ) [~ (k ) ]*  = 5.~, Also, 
it is easily shown that ~ h ~ ( k ) = z ~ ( k ) ,  to the relevant order in k. An 
associated set of phase functions is constructed from the same linear com- 
binations of the conserved densities that diagonalize the macroscopic 
hydrodynamic equations, 

(3.3) 

with the property (O~l~ v) =Suv. Explicit expressions for the coefficients 
~" are given in the next section. Since they turn out to be real, there is no 
distinction between 1~") and [~"), and the tilde can be deleted. If the 
matrix (2.4) is written as 

G(k, t )=  (A(k, t)]A(k))-= (A(k)l ~ IA(R)) (3.4) 

then its time evolution for large t can be represented as 

~ ~ J0~(k)) e-~%(~)'(~'(k)l (3.5) 
# 

Equation (3.4) with the long-time approximation (3.5) is the Landau- 
Placzek theory (13) for CA fluids, 

G=a(k, t) = ~ ~/t~ (t-~o ~,(~)' (3.6) 

where the single-mode strength factors are 

M~.~(k) = (A~(k) [ Os'(k) ) ( ~ ( k )  I A G(k) ) (3.7) 

Since the matrix f2 is easily determined for any given CA, it is 
straightforward to determine the sound velocities and eigenvectors. 
Calculation of the transport coefficients is more difficult since it requires 
analysis of the time evolution of the CA. Equations (2.14) and (3.3) provide 
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an appropriate formulation of transport that is suitable for study both by 
simulation and analytical means. 

Equation (3.6) shows that the correlation functions G~,(k, t) provide 
a direct probe of linearized hydrodynamics by simulation of fluctuations in 
the equilibrium state. Present efforts are directed primarily at simulation of 
various nonequilibrium states with emphasis on effects due to nonlinear 
hydrodynamics. Here we want to stress the complementary problem of 
determining the form of linearized hydrodynamics in low dimensions. The 
simple structure of (3.1) is valid only if the transport coefficients 2i exist in 
the s--,0 limit indicated in (2.14). However, for fluid-type models with 
dimensionality d ~< 2 it is expected that the transport coefficients diverge in 
this limit for an unbounded system, or that L(k, s) in (2.11) or A(s) in 
(2.12) are nonanalytic functions of s at the origin. 

Related correlation functions that have been studied by simulation are 
the single-site correlation functions G(r, t; r, 0 ) -C( t ) ,  which are space 
independent due to translational invariance. These correlation functions 
can be written in a form suitable for study of their hydrodynamic limit as 

C(t)=-~ V -1 ~ G(R, t) (3.8) 
k 

where the k summation extends over the first Brillouin zone. The long-time 
behavior of this function should be dominated by the contributions from 
small k, for which the hydrodynamic limit (3.5) applies. The expression 
(3.6) gives directly 

C ~ ( t ) :  V -1 ~ M" (k~e ~,,(k)t (3.9) 
k,# 

The strength factors M ~  can be calculated from (3.7) once the CA fluid is 
specified and the local conserved densities are identified. Purely diffusive 
modes (with c~ =0) contribute in (3.9) terms proportional to  t-d/z; the 
terms involving sound modes decay faster. We note that this long-time tail 
is characteristic of single-site correlation functions, which decay like the 
solution of a diffusion equation evaluated at the origin. This tail is not 
related to the so-called "long-time tails" of the current-current correlation 
functions (2.15), which originate from a coupling of two hydrodynamic 
modes. The former tail is contained already in the low-density Boltzmann 
approximatin; the latter is not. One needs a kinetic equation with addi- 
tional many-particle collisions (ring collisions). 

In the preceding part of this section we have been assuming that the 
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Navier-Stokes transport coefficients exist and that the hydrodynamic 
propagators, defined as 

a.(k, t)= (~"(k, t) J r G~(k, 0)= l (3.10) 

decay as pure exponentials in the long-wavelength limit. For dimen- 
sionality d~< 2 this need not be true. In the remaining part of this section 
we formulate a self-consistent mode coupling theory in terms of these 
propagators. This is obtained in two steps. First, the Laplace transform 
of the propagators is expressed in terms of the eigenvalues as 
Is + ikc. +k22~(k, s)] (~.(k, s) = 1, where 2~(k, s) may depend on the 
direction of k but not its magnitude. Next, the eigenvalues are expressed as 
functionals of G.(k, t) through an asymptotic analysis of the Green-Kubo 
expressions for 2.(k,s). These two expressions then must be solved 
simultaneously. 

Within the present context, it is straightforward to extend the mode 
coupling theory developed for continuous fluids to CA fluids to determine 
the long-wavelength, long-time behavior of the current-current correlation 
function matrix associated with the Green-Kubo expressions (2.15), 

(J(k, t)l J(k)> = (j(k)[ ~ ])(k)) 

The currents may still depend on the direction/~ of the waveveetor k but 
not on its length. Mode coupling theory is a generalization of (3.5) that 
identifies the slow dynamics of a variable with its dependence on the local 
conserved densities and their products. Since the currents J are orthogonal 
to linear combinations of these densities, it is necesssary to retain terms up 
through bilinear combinations, 

E " ~  J~#'(k)> G~(k, t)(~,"(k)f 
,u 

+(2V) -~ ~ I[-~,~(q) C ,V(k-q) ]>G,(q , t )G~(k-q , t )  
q ,# ,v  

x < [r ~V(k-q)][  + ... (3.11) 

Here, [ ~ 0 ]  denotes the part of ~ orthognal to l1 > and [~>. The long- 
time behavior of the current-current correlation function is therefore given 
by 

(J~(k, t)lJ~(k)> ~ (2V) -1 ~ M~(q, k - q )  G,(q, t) Gv(k-q,  t) (3.12) 
q ,  IL, v 

where the two-mode strength factors are 

M~(q, 1)= <J~(k)J r ~,V(l) )<r r j j~(k)> (3.13) 
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The hydrodynamic eigenvalues (3.1) and Green-Kubo relations above 
presume the existence of the small-s limit for A(s). This is always possible 
to assure for finite geometry, but the limit may not exist in the large- 
system-size limit. The source of this difficulty lies in the assumption that 
the hydrodynamic eigenvalues are analytic in the wavevector k. More 
generally, the eigenvalue equation (3.2) representing the dispersion rela- 
tions for the slow excitations must be replaced by the implicit equation 

{ikf2+k2A[f:, -co~(k)]} ~"(k) = oJ,(k) ~ ( k )  (3.14) 

where A[/r s] denotes the (possibly nonanalytic) small-s behavior of the 
Navier-Stokes matrix (2.12) at s=0 .  To solve this equation, the 
asymptotic time dependence of the current correlation function ~b(t) can be 
described using the mode coupling result (3.12). The equation for the 
hydrodynamic modes is then found to be 

e)~(k) = ic~k + 

• 
q , p , v  

Z,(k)k 2 

exp[co~(k) t] 
t = 0  

A~(q, k - q )  G.(q, t) Gv(k-  q, t) (3.15) 

pv  A, (q, !)= (~) M~(k,, l)O} (3.16) 

Here MP~ is the mode couppling amplitude given by (3.13) and 2 b is the 
"bare" transport coefficient arising from the faster dynamical excitations. 
The self-consistent equation (3.15) is to be solved for asymptotically small 
k, and leads to a nonanalytic dependence (7) on k of the hydrodynamic 
eigenvalues (3.14). 

The results of Sections 2 and 3 represent the linearized hydrodynamic 
modes, susceptibilities, and transport coefficients in their most general 
form, provided the transport coefficients exist. The hydrodynamic descrip- 
tion for the long-time behavior of time correlation functions has also been 
extended to CA fluids. No specific dimension, lattice structure, or CA 
dynamics is implied. In subsequent sections, these results are applied to 
specific models of current interest. 

4. S I N G L E - C O M P O N E N T  FLUID  

To illustrate the above results in more detail, we consider a lattice gas 
for a simple one-component fluid. A restriction to complete isotropy is not 
necessary and one could include in the discussion both the FHP ~ and 
HPP O7) models, as we have shown in a preliminary publication. (9) Here, 
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however, we will restrict ourselves to systems where tensors up to fourth 
rank have the full fluid isotropy. The collisional invariants are those 
associated with conservation of particle number and all components of the 
momentum, 

f an = 1 
a~(c) = ~a t  = [i. c = c~ (4.1) 

I ( a t = ~ ,  . e = c ,  ( t = 3  ..... d + l )  

where {~, ~3,..., ~a+l} is a set of d orthonormal unit vectors. The slow 
variables are the local densities As(k, t ) = Z c a ~ ( c ) f i ( c ,  k; t), with c~= 
{n, l, t}. We assume that all unphysical conservation laws have been 
eliminated (see, however, Section V) so that (4.1) form the complete set. 
We first calculate the susceptibility matrix, using (2.20) and (4.1). It is 
diagonal, Z~ = Z~ c~ ,  with 

Zn = ( A , , I A n )  = b K ,  Z, = ( A ~ [ A I )  =c~z , , ,  Z, =)f, (4.2) 

where b is the number of velocity states per site, including a possible zero- 
velocity state (rest particle). Also, Co is defined as bdco=~] c c 2 and will 
appear to be the sound velocity. The constant K is defined in (2.19). The 
Euler matrix follows from Eq. (2.21) and has only two nonvanishing 
elements, 

= = 2 (4.3) ( J n [ A t )  = ( J z l A n )  =Co2Zn, Qnt 1, s c o 

The eigenvalues and eigenfunctions represent two propagating sound 
modes, labeled with a = +,  and d -  1 nonpropagating shear modes, labeled 
with t as in (4.1). For dimensionality d > 2  the Navier-Stokes transport 
coefficients exist and the eigenvalues are, for small k, 5 

c%(k)  = iacok + F k  2, co,(k ) = vk 2 = ( t l /p )k  2 (4.4) 

and the corresponding eigenfuncnons are 

r~"~(k)) = {Co jAn(k))+  o-IAt(k))}/(2Zt) 1/2 
(4.5) 

r Or(k) ) = IAt(k ) ) / (Z , )  ~/2 

The subtracted fluxes associated with these eigenfunctions are defined by 
(2.17), and found to be 

L(k ,  t) = 0, J~(k, t) = ~r(22:t)-~/2 ~ (c 2 _ c 2) 6n(e, r; t) 
~,~ (4.6) 

Jr(k, t) = Z~ t/2 ~ e,er 6n(c, r; t) 
r ,  r 

5 Note  that the viscosity defined through t / = p v  differs from the usual one by a factor 1/vo 
where v 0 is the volume of the unit cell and p is its filling fraction. In the FHP-mode l  
v o = x/-3/2. 
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with f n = n - ( n ) .  The sound damping constant F and the kinematic 
viscosity v = q/p follow from (2.14) as the small-s limit of 

2 ~ ( s ) = F ( s ) =  ~ *  e-~'(ffo(t)lff,~) 
,=0 (4.7) 
ok'5 

) , ( s ) =  v(s)= ~ *  e- 'C(YM')13 , )  
t ' = 0  

These are the Green-Kubo relations for the one-component CA fluid. 
The results (4.7) can be expressed in terms of two scalar viscosities 

characterizing a viscosity tensor, defined by 

qo'lm(S) ~ -  (P/Zl) 

with the tensor Jo given by 

~* e-S'(Ju(t)[J,m) (4.8) 
t = O  

Ju(t) = ~ (cicj - c2 fu) fin(c, r; t) (4.9) 
r,c 

The fluxes appearing in Eq. (4.8) are simply related to a~j by (2Zt) 1/2 Jt = 
/~i/~jJ u and L1"1/2i-, = g , f j u .  Since the fourth-rank tensor rl/jtm has the full 
fluid symmetry, it can be expressed in terms of two independent scalars, 

~ijlm=q(3il~jra'J-~imbjl--2fij3lm)-~3ij6lrn ( 4 . 1 0 )  

It is easily shown that 

q + r and v = - .  
P 

which identifies q as the shear viscosity and ~ as the bulk viscosity. The 
Green-Kubo relations for these transport coefficients are therefore given by 
the small-s limits of 

o o  1 p y* -,,(~o 
- J u )  q(s) - (d-1)(d+2)Z,  ,=o e jo(t) [ "o (4.11) 

Here, j o  denotes the traceless part of Ju, and a summation convention 
over repeated indicies is implied. 

~(s)=d -2 s ~* e- ' t ( j**(t ) l ' j j j )  (4.12) 
Zt ,=o 
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Several observations can be made from these results. As expected, the 
shear viscosity vanishes in one dimension. The bulk viscosity vanishes in all 
dimensions for single-speed models, since c2= dc~ = 1. This is similar to the 
case of continuous fluids, where the bulk viscosity vanishes in the absence 
of statistical correlations (low density, no internal states). For the specific 
case of the F HP  1 model, the parameters are d =  2, b = 6, and c o = l/x/2. 
Equation (4.11) then reduces to a result obtained by Rivet for the shear 
viscosity. (18) The F H P  II and III models include a rest particle, so b --- 7. In 
this case Eq. (4.11) does not agree with that given by Rivet. Instead, his 

!~ Recently, Zanetti (22) has obtained expression actually represents q + 2 �9 
expressions for the viscosities. His expressions for the shear and bulk 
viscosities are equivalent to ours. 

In Table I we list for the F H P  models the values of the propagation 
parts of the transport coefficients A P ~ = - q ~ ( 0 ) / 2  defined below 
Eq. (2.17). The results agree with those obtained by d'Humieres and 
Lallemand. (23) 

Qian et  al. (~4) have considered a one-dimensional lattice gas CA with 
five velocities per site ( c=0 ,  +1,  +2;  b = 5 ) .  There are two collisional 

2= 2. Since the shear viscosity is zero, the invariants (a, = 1, at = c) and c o 
bulk and longitudinal viscosities are equal and given by (4.12) with 

J i i ( t )  = ~ (c 2 -  2)cSn(c, r; t) (4.13) 
r ,  c 

The corresponding correlation function (4.12) in one dimension is expected 
to diverge strongly as s ~ 0 due to memory effects (mode coupling). The 
resulting sound damping at long wavelengths then will be anomalous. 

To illustrate the hydrodynamic result (3.6) for the single-component 
fluid, we quote the behavior of autocorrelation functions of mass and 
momentum densities at small k and large t values, 

G,z(k, t) = c2 G . . ( k ,  t )  = c~z  . cos(  c o k t  )e  - rk:' 

G,(k,  t) = c Z z ,  e-Vk2' (4.14) 

Table  I 

Property FHP I FHP II, III 

b 6 7 
co 

v; = ~p/p - 1/8 - 1/8 
4P/p 0 - 1/28 
x ~ - 1/8 - 1/8 
xP -1/4 -1/4 
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A closely related function that has been considered in recent computer 
simulations on lattice gas cellular automata (3'25) is the single-site velocity 
correlation function, or correlation function of the flow field, defined as 

~b(t) = (dV) 1 ~ (g(r, 0)-g(r, t ) )  (4.15) 
r 

where g(r, t) = ~2c cJn(c, r; t) is the momentum density. By decomposing g 
into contributions from the densities in (4.1), we can write ~b(t) in terms of 
the hydrodynamic modes [see Eq. (3.9)], 

~,(t) = ( d r ) - '  y~ [ ( d -  1) a.(k, t)+ a,,(k, t)3 
k 

d - 1  
d c2)~"(4~vt)-J/2 

+ d-lcgzn(g~rt)?d/2 F~ ' 2 ; - ~ /  (4.16) 

The k summation in the first equality extends over the first Brillouin zone. 
For large systems this sum may be replaced by an integration over k with 
weight voV/(2~) a, where v o is the volume of the unit cell. The k integral 
over Gtt, given in the second equality of (4.16), can be identified as a con- 
fluent hypergeometric function 1F1. The confluent hypergeometric function 
~F1 decays exponentially for d =  odd and algebraically for d =  even. (26~ For 
example, with d = 2 and "bare" Boltzmann-Enskog values for the transport 
coefficients, (23) the dominant shear and sound mode contributions are, 
respectively, voCZZn/8~vt and --VoZ~/47ct 2. The last term is purely 
kinematic. 

5. S T A G G E R E D  D E N S I T I E S  AS S L O W  M O D E S  

Due to the discrete structure of the phase space and the simplified 
dynamics there exist spurious conservation laws in the HPP and FHP 
models. For instance, if only binary collisions are allowed, the total 
momentum along every lattice line is a global invariant. By adding triple 
collisions, these unphysical conservation laws are eliminated in the FHP 
model. 

However, there exist other classes of global invariants for the CA 
fluids on which computer simulations have been performed. As a simple 
example, consider a CA Lorentz gas, where a single particle is moving with 
unit speed on a square lattice. A fraction p of its sites, chosen at random, 
is occupied by immobile scatterers. The dynamics (deterministic or 
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stochastic) of the moving particle is described by the occupation number 
n(c, r; t) which satisfies number conservation (2.1). If the sites of the square 
lattice are denoted by r = rxe 1 + rye2, then (given appropriate boundary 
conditions), the lattice can be divided into two sublattices, depending on 
whether r" p = rx + ry is even or odd, where 11 = (1, 1). Obviously, all par- 
ticles at time t on one sublattice will be on the other sublattice at time 
t + 1, independent of the scattering rules and independent of the density of 
scatterers. The difference A(t)  between the total number of particles on the 
odd and even sublattices changes in time as ( -  l)t and the global invariant 
is 

H = ~  ( -  1)'+r'l~ n(c, r; t). 
r , r  

The staggered particle density 

h(r, t ) = ~  ( -1)~+r '~  n(e, r; t) 
c 

is a slowly varying quantity that satisfies (2.1). In the large-time and 
large-wavelength limits, this density satisfies a diffusion equation. The 
corresponding diffusion coefficient is again given by a Green-Kubo rela- 
tion, which will be given in Section 6.3. This invariant does not exist on the 
hexagonal lattice. Similarly, one has for the HPP model on the square 
lattice as spurious invariants the total staggered number and momentum of 
the particles, 

/ / '  = y~ ( - 1 ) ' + r ~  a(e)n(e, r; t) 
r ,  c 

where a (e )=  {1, e}. 
Recently Zanetti (22) has constructed similar global invariants for the 

FHP fluid that can be understood from the following one-dimensional 
example of a fluid with speeds Icl = 0  and Icl = 1 only. If momentum is 
conserved in collisions, then 

H " = ~  (--1)~+r cn(c, r; t) 
r ,  r 

is a global invariant. Adding particles with speed IcJ = 2  destroys this 
invariant. For a more extensive discussion on different types of global 
invariants in lattice gases we refer to d'Humieres et al. ~28~ 

For the FHP fluid there are b = 7 velocity states per site: e o = 0 (rest 
particle) and Ca = {cos[n(a-- 1)/3], sin[re(a-- 1)/3] }, with a =  1, 2 ..... 6. In 
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this case Zanetti has constructed three global invariants of the type 
indicated above, 

/4~ _=y~ h~(r, t ) = ~  (-1)~+~.r ~. cn(c, r; t) (5.1) 
r r , c  

where 11--{Pl, 112, or 113} represents a reciprocal lattice vector with 
11a ' co=0  and 11a'Co+l=--11~'Ca+2=--+l" Here, ~ is a unit vector 
parallel to 11. Since 11~ �9 r is an integer, it allows us to divide the lattice rows, 
parallel to ca, into an even and an odd sublattice. The total 11 momentum 
on the even sublattice at time t is on the odd sublattice at time t + 1. 

Add ing  particles with speed Ic150 and Ic151 will again destroy this 
invariant. 

The time correlation function of two different staggered momentum 
densities 

ha(r , t )=  ( - 1 ) ' §  P" ~. g(r, t) 

at two different space-time points is not translational invariant because of 
the two sublattices involved. We consider instead its spatial average as the 
relevant time correlation function for conserved densities to be used in 
Eq. (5), namely, 

G~/~,(r, t ) =  V - l  ~ (A~(r +r ' ,  t)Ap,(r', 0 ) )  
r '  

= (_ 1),+ ~.r (g~(r, t) g /0 ,  0)) ,~,  (5.2) 

where ga = ~ ' g  In the second equality we have used the relation 

V- I  2 (-- 1)([~+P')r =OBB' 
r 

We will show here that this correlation function satisfies a diffusion 
equation in the long-wavelength limit, 

Is + k2AB(fi~, s)] Gaa(k, s) = G~(k, 0) = Zl (5.3) 

where the small-s limit of A~(/~, s) is the diffusivity of the staggered mode. 
Zanetti has derived Green-Kubo relations for these spurious transport 
coefficients. As we find partial disagreement with his results, we also apply 
our method to these staggered densities, defined in (5.2). We do so by 
extending the set of three slow variables (4.1) for the FHP  model Am(k, t) 
with c~ = {n, l, t} to include the additional three staggered densities, 

A~(k, t) = ( -  1)' ~ [ e x p ( - i k ' r )  exp(-11"rrci)]/~.en(e, r; t) 
r ,  c 

= ( -  1) ~ ~ ~.ch(c,  k+~11; t) (5.4) 
c 
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where ~z[~, 7 [ 1 ~ 2 ,  and ~[13 denote corners of the first Brillouin zone or 
Wigner-Seitz cell on the reciprocal lattice. 

Next we consider the 6x  6 matrices )~, f2, and A in Eqs. (2.13) and 
(2.14). The susceptibility matrix remains diagonal and we add to the results 
(4.2), 

2 (5.5) Z~ = (A~IA~) =CoZ. =Zt 

For the Euler matrix we have in addition to the results (4.3), 

G2~p = f2p~, = 0 (5.6) 

with ct = {n, l, t} and fl, f l '=  {ill, f12, f13}" It follows from (2.17) and (5.6) 
that the subtracted currents 3~ in (4.6), with c~ = (n, l, t), do not couple to 
the staggered densities, and are orthogonal to all conserved densities. 
Therefore the Green-Kubo relations (4.7)-(4.12) for the standard transport 
coefficients remain valid. It also follows that the currents J~ for the 
staggered densities have no subtracted component, i.e., in the limit as 
IkP --,0, 

=F,  ( - -1) '+~'r~'e /~ .c  ~n(c, r; t) (5.7) 
r , c  

and are also orthogonal to all conserved densities. Next, consider the 
Navier-Stokes matrix for the transport coefficients A. Consider first the 
submatrix A,~,. The associated current, given by (5.7), is written in terms 
of the local microscopic stress, 

J/~(l):~ (--1)~+P'r fi~ifljaij(r , l) (5.8) 
r 

o-u(r, t ) = Z  c,ej~n(c, r; t) 
c 

The current correlation function defining A~p, is then 

()~,(t)l)~> = v - ~ Z  ( - 1 )  '+~ '+~'r '  
r, r '  

x/~,/~,~/~j/~,(a/j(r', t) am,,(r, 0))  

Use of translational invariance and the relation 

(5.9) 

(5.10) 

V - I  2 (--1)([~'+[Y)'r=(~flfl ' 
r 
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shows 

A3(fc, s)=(Z3) -1 E* e st E (--1) t+p'r 
t = O  r 

(5.11) 

It can be shown in a similar fashion that A=~ = A~  = 0, for a = {n, l, t} and 
f i=  {fl,, f12, 33}. It is clear from (5.11) that the diffusion coefficients Ae are 
in fact components of a fourth-rank tensor associated with the stress 
autocorrelation function. By arguments similar to those used in the reduc- 
tion of (4.8) we obtain the/~-dependendent diffusion coefficients, 

A~(/c, s) = ~:x(s) + ~c2(s)(~ �9 ~)2 (5.12) 

with Green-Kubo relations for the scalar coefficients, 

~1(s)=(4)~,) 1 ~* e - , ~  (__l)t+p.r 
t = 0  r 

• (~~  o %(r, t)) 
(5.13) 

/r -1 Z*  e-Sr~ (--1) t+p'r 
t = 0  r 

x (a . (0 ,  0) o-j/r, t ) )  

o denotes the traceless part of a~ [compare with (4.11) and (4.12) where a o 
for d =  2]. 

There is a significant difference between Zanetti's result for ~ + K2 
and ours. His expression for the staggered current density appears with ~o 
in (5.9) replaced by ~c  (cicj-c26~)6n(e, r; t). Then, for example, his 
staggered current components involving a, and associated transport coef- 
ficients vanish for the single-speed FHP model, whereas ours are nonzero. 
The difference persists for the FHP II and III models as well. The propaga- 
tion parts for the new diffusion coefficients are A~,  = -  �89 ), as 
defined below (2.17). Table I shows the results for ~P and ~cP for the FHP 
models. Our results agree with those of Zanetti, but his equations fail to 
satisfy the relation ~c~ = -�89 ). 

6. B I N A R Y  D I F F U S I O N  

In this section three types of diffusion are considered. The first is diffu- 
sion in a mixture of colored particles, the second is a mixture of particles 
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with different mass, while the third is Lorentz gases and tagged particle dif- 
fusion. The color mixture is defined by starting from a lattice gas of identi- 
cal "white" particles that obey the exclusion principle (no two particles can 
occupy simultaneously the same state, {c, r}). Next, a particle is painted 
red with probability x. This system then can be in thermal equilibrium in 
all respects except for the color distribution. It is somewhat different from 
a regular binary mixture in lattice gas models, whose exclusion rules are 
described by occupation numbers cl(c, r; t) and n2(c, r; t) for the two types 
of particles. In the regular mixture two particles of different types can be 
in the same state; this is forbidden in the color mixture. The Boolean 
variables describing the microscopic state will be slightly different in the 
two cases, as seen below. A Lorentz gas may be considered as a limiting 
case of a binary mixture with very different masses, vanishing concentra- 
tion of light (moving) particles, and a finite concentration of heavy 
(immobile) scatterers. Since the concentration of moving particles is 
infinitesimal, the interaction between moving particles can be neglected and 
the exclusion rule for double occupancy removed. Attention then can be 
restricted to a single moving particle. Exactly the same derivation applies 
to a tagged particle moving in a gas of untagged particles. 

6.1. C o l o r  Mix ture  

To describe the color mixture, a Boolean color variable or(e, r; t ) =  1 
for red and 0 for white is associated with every occupied velocity state [i.e., 
n(e, r; t) = 1]. For density p and red particle fraction x we have 

p = ~  (n(c,r; t)) ,  p x = ~  (n(e ,r ; t )a(c ,r ; t ) )  (6.1) 
d c 

In addition to the conservation laws (2.2) for total particle number and 
momentum, there is a conservation law for red particle number, 

In(c, r + c; t + i ) or(c, r + c; t + 1 ) - n(c, r; t) a(c, r; t)] = 0 (6.2) 
c 

In the single-component case the time correlation function for fluctuations 
of 6n(c, r; t) is the basic quantity in which all transport properties can be 
expressed. Here it is necessary to consider the microscopic color fluctua- 
tion, defined by 

6a(c, r; t )=n(c ,  r; t)[a(c, r; t ) - x ]  (6.3) 

The equal time variance is given by 

(6a(e, r; t) &r(c', r'; t) ) = K' 6r, r, 6~,c, (6.4) 
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with 

K' =fx(1  - x ) =  px(1 - x)/b (6.5) 

The variables 6a and 6n are uncorrelated in the sense (6n(e,r; t )  
&r(c', r'; t ) ) = 0 ,  as follows from (6.3). 

The matrix formulation of hydrodynamic fluctuations in Section 2 
applies to the color mixture if an additional hydrodynamic variable 
6A~(r, t ) - -Zc  6a(e, r; t), is included for the local color fluctuation. The 
corresponding matrices A and f2 do not couple this new variable to the 
dynamics of the mass and momentum fluctuations. Furthermore, f2~ 
vanishes. Therefore, the additional hydrodynamic equation is a diffusion 
equation, 

( ~ +  k 2 D~)Goo(k, t ) = 0  (6.6) 

where 

G~,,(k, t) = (A~(k, t) I A,,(k)) (6.7) 

The diffusion coefficient for the colored mixture is given by the small-s limit 
of the Green-Kubo expression, 

D~(s)= (dZoV) -1 ~*  e-"(I~(t) .I~)  (6.8) 
t = 0  

where ) ~ = ( A o l A ~ ) = b K '  and K' is defined in (6.5), and where the 
subtracted flux Io is defined by 

I~(t) = ~  en(e, r; t)[a(e, r; t ) - x l  (6.9) 
c 

Equations (6.8) and (6.9) have a structure analogous to those for the 
continuous fluid case. (8) 

6.2. Regular Binary M ix tu re  

In the regular binary mixture, local density conservation holds 
separately for the total mass density of each species, ~c  msn~(c, r; t), with 
s = 1 or 2. The average for each species is denoted by Ps, with p = Pl + P:. 
In addition, there is conservation of the total momentum density 
Y~,ornsesns(C, r; t). To describe the model, it is convenient to consider 
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linear combinations of the basic fluctuations defined to be the total mass 
density fluctuation @ and a concentration fluctuation cSx given by 

6#(e, r; t) = ~ ms ~Sns(e, r; t) 
" (6.10) 

6x(e, r; t) = (ml/z1) 6nl(e, r; t ) -  (mz/Z2) 6n2(e, r; t) 

where )G =m2s([6n( e, 0)] 2) 2 =ms f , (1 - f , ) ,  with fs = (n , ) .  The equal time 
fluctuations are 

<6p(c', 0) 6/z(e, r)> : (~r,O (~c,c'Z 
<6#(e', 0) cix(e, r)> = 0  (6.11) 

(~x(e', 0) 6x(e, r ) )  = ~,,o 6C, c ' ( Z t )  - 1  

where Z=Z1 +Z2 and (Z') -1 =)/11 + ) / [ i .  
The matrix form of hydrodynamic fluctuations in Section 2 is again 

applicable if the additional hydrodynamic variable c~Ax(r, t) = ~c. 6x(c, r; t) 
is include. From here on the arguments are very similar to those preceding 
Eq. (6.7). The only nonvanishing element o f /2  connecting the concentra- 
tion fluctuations cix with fluctuations in the total mass and momentum 
densities is 

(2x,)/, =/~" ( J ~ r A z ) = Z  (c~-c~)/d (6.12) 
c 

Here {es} refers to members of the set of bs lattice vectors corresponding 
to allowed velocities in species s. If a rest particle is allowed, the vector 
c, = 0 is included in the set. Since in general el r e2, ~2~t is nonvanishing 
and the longitudinal momentum fluctuations couple to the concentration 
fluctuations. The proper diffusion coefficient is then obtained by 
diagonalization of s to identify the new hydrodynamic diffusion mode. 

For the sake of illustration we now restrict attention to a special case 
by imposing two simplifying restrictions: (i) the number of velocity states 
per site is the same for each species, b~ = b 2 = b ,  yielding (A~ I A ~ ) =  b/)(, 

2 is the same for each and (ii) the mean speed per site %=2 (db)-i ~ c s  
species, i.e., ~1 =~2 = Co. Consequently, Q~z = 0  and the concentration 
fluctuation decouples from the other hydrodynamic modes just as for the 
color diffusion case. The time correlation function (A~(t)JA~) satisfies a 
diffusion equation like (6.6) with diffusion coefficient D(s) given by 

D(s) = (z'/bdV) ~* e - " ( l ~ ( t ) -  I~) (6.13a) 
t = O  

= (bdz'V) -~ ~* e "t(I~(t) '11) (6.13b) 
t = O  

822/58/1-2-6 



80 Ernst and Dufty 

The fluxes are given by 

Ix(t) -= ~ [(mtel /z1)  nl(c, r; t) - (m2ez/Z2) nz(e, r; t)] (6.14a) 
r , c  

I s ( t , = ~ ( 6 s s , - ~ ) m s ,  c~,ns,(cs,,r;t) (6.14b) 
�9 r ,  c 

with s and s ' =  1, 2. The equality (6.13b) can be deduced from (6.13a) after 
some rearrangements using I1 + I2 = 0. The subtracted current in the diffu- 
sion coefficient for a binary mixture of continuous fluids ~8) differs from 
(6.14b) in that Z~/Z is replaced by pJp. This difference can be traced to the 
lack of equipartition between different species in the lattice gas models to 
the exclusion rule for two identical particles in the same state, {e~,, r}. 

Equations (6.13b) and (6.14a) do not reduce to the diffusion coef- 
ficient for the color mixture, given by Eqs. (6.8) and (6.9), if the masses are 
taken equal (ml =m2) and species 1 is considered "red" and species 2 is 
considered "white." The reason is that this limit allows a red and white par- 
ticle to be in the same state, whereas the color mixture does not. 

6.3. Lorentz Gas and Tagged Particle Di f fusion 

In this case the dynamics of a single particle (stochastic or deter- 
ministic) is described by the occupation number n(e, r; t), with the conser- 
vation law 

In(e, r + e ;  t +  1 ) - n ( e ,  r; t)] = 0  (6.15) 
c 

The only hydrodynamic variable is then A(r, t )=  ~c n(e, r; t). The equal 
time correlation of occupation numbers is now simply 

(n(e', O) n(e, r ) )  = (bV) -1 3cc, 6r,o 

The correlation function of tagged particle densities or van Hove self- 
correlation function is then 

G ( k , t ) = ~  ~ { e x p l - - i k . ( r - r ' ) ] }  
r , r '  c,c' 

• (n(c',  r': 0)n(e, r; t ) )  (6.16) 

with a susceptibility matrix z ( k ) =  G(k, 0 ) =  1. Following the analysis of 
Section 2, it is found to obey a diffusion equation with diffusion coefficient 
given by the small-s limit of 

D(s)=d -1 ~* e S ' (v( t ) 'v (0) )  

,=o (6.17) 

�9 ( t )  = Z en(c, r; t) 
r ,  c 
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This expression has already been used in the literature. (27~ From the discus- 
sion in Section 5 on staggered densities it follows immediately that the 
staggered density (5.1) in the Lorentz gas on a hypercubic lattice is a slow 
diffusive mode. The corresponding diffusivity ~c(s) can be derived in an 
analogous manner as (5.13). The explicit form of ~c(s) is obtained from 
(6.17) by inserting the factor ( - 1 )  ~'~'+r'~ in the summand, where p =  
(1, 1, 1 ..... 1) is a d-dimensional vector. This is a new result. 

In principle, tagged particle diffusion is a limiting case of the color 
mixture with a vanishing fraction of tagged "red" particles. This limit is 
somewhat subtle. However, the above derivation can be repeated verbatim 
after replacing "moving particle" by "tagged particle." The attractiveness of 
the method of Section 2 is that the details of the dynamics do not enter in 
the derivation, and it is not necessary to specify whether the untagged 
particles are moving or fixed. Therefore, the Green-Kubo relation for the 
tagged particle diffusion coefficient is also given by Eq. (6.17). 

In existing simulations of tagged-particle diffusion in lattice gas 
cellular automata (29~ the diffusion coefficient has been obtained from the 
mean square displacement, ([r( t)-r(O)]2)~2dDt,  as t ~ c c .  Equa- 
tion (6.17) offers an alternative for direct simulation. 

7. D I S C U S S I O N  

The time correlation function method developed for continuous fluids 
has been shown to apply as well to cellular automata. The method focuses 
attention on time correlation functions for the local conserved densities, 
which are related to the linearized hydrodynamics for the system con- 
sidered. The primary results obtained here and some of their implications 
are summarized in the following comments. 

1. The derivation of the linearized hydrodynamic equations and iden- 
tification of the corresponding sound speeds, susceptibilities, and transport 
coefficients is quite general. It applies to deterministic and stochastic 
dynamics, to single-speed and multispeed models (including rest particles), 
and to lattices for which the macroscopic equations may not have fluid 
isotropy. The only condition on the dynamics is the existence of local con- 
servation laws (2.2) and an equilibrium state. The specific applications con- 
sidered here include the FHP models with fluid symmetry, multispeed 
models (such as FHP II and III and the one-dimensional model of Qian 
et aL(24)), and several cases of binary mixtures. In ref. 9 we have also given 
the viscosities for the HPP model that does not have fluid symmetry. In 
this last case our Green-Kubo expression for the longitudinal viscosity 
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differs from that of ref. 17 by an overall factor and the presence of the 
propagation part. 

2. The space- and time-dependent correlation functions for the con- 
served variables were determined for long times and small wave vectors by 
solution of the hydrodynamic equations. These results are valid under the 
assumption that the transport coefficients exist (see below), which may 
require that the latter become system-size dependent. Direct simulation of 
these equilibrium time-dependent fluctuations would provide measurement 
of both the hydrodynamic modes and the associated coefficients. The 
related, but k-independent, single-site correlation functions already have 
been simulated, (2s) and have the asymptotic algebraic decay given by 
Eq. (4.16). It is of interest to illustrate different types of long-time behavior 
by discussing the single-site correlation function Ge~(r=0, t) of the 
staggered densities, defined in (5.1) for the two-dimensional FHP model. 
The long-time, long-wavelength (coarse-grained) behavior is given by, 
according to (3.8), (3.9), and (5.3), 

G~(r  = 0, t ) =  V -1 ~ G~(k, t )~  V -1 ~ Zlexp[-k2A~ 
k k 

~--- •OZl [-(/s ..[_/(02)KOl ] - 1 /2  (4rot)-1 

Here the bare diffusivities A~(/~)= ~Col + ~:o2(~'~) 2 have been used. The 
single-site correlation function has additional fine-grained, long-time 
behavior, resulting from the undamped oscillatory staggered modes. This 
behavior is seen from the identity Gp~(r =0, t)= (-1) '  q4t), where O(t) is 
the single-site velocity correlation function whose long-time behavior is 
given in (4.1). Therefore, we obtain a contribution 

G~(r  = 0, t) -~ VoZ/( - 1)' (8~Vot) -1 

where Vo is the bare viscosity. The factor ( - l )  t is due to a high-frequency 
undamped mode at k = 0, similar to the plasmon mode in a one-compo- 
nent plasma. When coarse graining this fine-grained oscillatory behavior, it 
yields a vanishing contribution. 

3. The transport coefficients are given by formally exact expressions 
analogous to the Green-Kubo formulas for continuous fluids. They are dis- 
crete time sums over time correlation functions of so-called subtracted 
fluxes, in which the first term at t = 0 has a relative weight 1/2. Alter- 
natively, if this last restriction is removed, there appears a negative con- 
tribution of 1/2 the t = 0 term, which has been called the "propagation" 
part of the transport coefficient. It is a vestige of the discrete space-time of 
the CA that persists at the macroscopic level. The derivation here shows 
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that no particular significance should be attributed to this part of the trans- 
port coefficient. The name "propagating part" is actually inappropriate, as 
it falsely suggests a relationship with the free-streaming motion of the par- 
ticles. This is not the case. Such a term is even present in standard random 
walk models on a uniform lattice. This can be seen by taking the forward- 
time derivative of Einstein's formula for the mean square displacement and 
by transforming it into a velocity correlation function by defining a particle 
velocity as v( t)= Atr(t). 

4. The Green-Kubo expressions for the transport coefficients are 
obtained from the Navier-Stokes matrix A in Eq. (2.14). It is possible to 
show (ref. 8, Chapter 10) that A is a positive-definite matrix and conse- 
quently that the transport coefficients are positive (when they exist). 
Positivity is necessary for stability of the hydrodynamic modes. This point 
is noted in light of certain "measurements" where it seems that negative 
viscosities have been found. (31) 

5. The Green-Kubo expressions for the transport coefficients involve 
a limit of small s. This limit occurs because these expressions were obtained 
from the dispersion relation (2.10), leading to s = s ( k ) ~ 0  as k--*0. The 
existence of the transport coefficients in this limit means they are "bulk" or 
"material" constants. However, by analogy to the case of continuous fluids, 
it is expected that there will be a slow algebraic decay of the current 
correlation functions for the Green-Kubo expressions ~ t -d/2 for d~> 2 and 

t 2/3 for d =  1. Long-time tails in the velocity autocorrelation function 
of a tagged particle in the FHP III fluid have already been observed in 
computer simulations. (3~ They imply a behavior of A ( s ) ~ l n ( s )  for d =  2 
and A(s) , ,~s  -I/3 for d =  1. 

6. The last observation indicates that the transport coefficients do 
not exist in dimensions less than or equal to 2. Therefore it is expected that 
Navier-Stokes hydrodynamics has transport properties that depend intrin- 
sically on the boundary conditions, or alternatively that the hydrodynamic 
eigenvalues have a more complex structure. This makes the study of 
linearized hydrodynamics, by theory or simulation, particularly interesting 
for the low-dimensional CA. Kadanoff et al. ~32) have investigated the conse- 
quences of the small-s divergence in A ( s ) ~  ln(s) by nonequilibrium simula- 
tion of Poiseuille flow. Their analysis of the results using mode coupling 
theory for the long-time tails leads to good agreement. A similar analysis 
of one-dimensional CAs predicts anomalous sound damping ~ k  3/2. Indica- 
tions of this behavior have been seen by Qian et al. (24) The self-consistent 
mode coupling theory to describe these problems has been given in Eqs. 
(3.14)-(3.16). 

7. The general method is applied to a single-component fired to yield 
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expressions for the shear (t/), bulk (~c), and longitudinal viscosity {t h = 
[2 (d-1) /d ] t /+ tc} .  The Green-Kubo expressions for bulk viscosity and 
sound damping constant I F  in Eq. (4,7)] are new; our formula for the 
shear viscosity has the same structure as in continuous fluids, i.e., a time 
correlation function of two traceless, second-rank tensors, as imposed by 
the isotropic symmetry of fourth-rank tensors. It agrees with Rivet's result 
for single-speed cellular automata models. For multispeed models Rivet's 
formula actually represents instead the combination t/+�89 We also 
discuss the discrepancies between Zanetti's results (22/and ours. 

8, The theory is also applied to several types of diffusion. We con- 
sider binary mixtures where the exclusion rule for double occupancy of a 
state {e, r} applies to (i) identical particles only (regular mixtures) and (ii) 
particles that are identical except for their color (colored mixture). The 
microscopic description (6.3) and (6.10) in terms of Boolean variables is 
different in both cases, and so are the diffusion mode, its time correlation 
function G(k, t), and the corresponding Green-Kubo formulas (6.8) and 
(6.13) for the diffusion coefficients D, which are new results. 

9. The formalism is further applied to the Lorentz gas, consisting of 
a single moving particle in a random array of fixed scatterers. The 
Green-Kubo formula (6.17) for the diffusion coefficient is a discrete time 
sum of the velocity correlation function, (29) which also applies for the diffu- 
sion coefficient of a single tagged particle in a one-component fluid. There 
exist much simulation data for this correlation function. (25'3~ 

10. The analysis here has been formally exact and has not addressed 
any particular approximation method for analysis of the many-body 
dynamics. The equilibrium space-time correlation functions and the 
Green-Kubo current correlation functions are appropriate quantities for 
study by various approximation methods known from the study of con- 
tinuous fluids. For example, a Boltzmann approximation often provides a 
very good approximation for the transport coefficients of CA, not only at 
low density (and by duality also at high density), but also at intermediate 
densities. In lattice gases with reflecting collisions, in which a particle after 
collision retraces part of its trajectory, 'there are long memory effects 
(pathological one-dimensional features) that invalidate the Boltzmann 
approximation3 27~ In these cases improved approximations such as ring 
resummation or effective medium approximations work considerably better 
than the Boltzmann equation. There appears to be a wide range of such 
problems to be studied for CA. Application of methods of nonequilibrium 
statistical mechanics and kinetic theory to such simple dynamical systems 
may clarify conditions for their validity and limitations. 
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11. F o r  the s taggered diffusivities the s i tua t ion  is less clear. N o  
calculat ion,  not  even a Bo l t zmann  a p p r o x i m a t i o n ,  is avai lable  tha t  is free 
of serious object ions.  ~22~ The basic  dynamics ,  even in uncor re la ted  colli- 
sions, has to take  into  account  the in terchange  of  s taggered m o m e n t u m  
between the two sub lattices. I t  therefore involves at  least  two t ime steps. 

F o r  a Loren tz  gas cel lular  a u t o m a t o n  one can show tha t  the s taggered 
diffusivity and  the usual  diffusion coefficient are identical .  
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